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Shear deformation of polymer melt observed via proton NMR: Theory and experiment
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We here develop a theory for the effect of shearing flow on residual proton dipole-dipole interactions for
polymer melts. The model is based on the use of correlation functions which derive from the return to origin
probability for polymers reptating in the tube of surrounding constraints. Using Doi-Edwards theory we
calculate the spin-echo response under equilibrium conditions and then consider the effect of a shearing flow
which deforms the tube, finding that there exists a strong dependence of transverse relaxation on Weissenberg
number. The results are compared with NMR measurements of shear-perturbed proton 7, relaxation in

494 kDa poly (dimethylsiloxane).
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I. INTRODUCTION

In one of the earliest “Rheo-NMR” experiments [1] Na-
katani et al. placed a polysiloxane melt in a Couette cell and
observed the proton NMR line shape under steady shear
flow. The idea behind the method was that shear-induced
order and consequent anisotropic segmental reorientation
could result in residual proton-proton dipolar interactions. In
that experiment the linewidth was unperturbed, probably due
to the deformation being insufficient to yield a strain rate
consistent with significant polymer deformation. Nonethe-
less, this first venture was a precursor to many subsequent
experimental studies [2—-6] of NMR spectra in deformational
flow. Later Rheo-NMR experiments on sheared polymer
melts have indicated linewidth changes [2], as revealed by
faster spin-spin relaxation. However lack of a suitable theory
connecting the spin-relaxation rate to statistical physics mod-
els of the polymer deformation has made such measurements
difficult to interpret. A much easier interpretation is possible
in the case of deuteron NMR measurements where the use of
a small deuterated probe molecule permits a direct measure-
ment of the ensemble-averaged segmental alignment tensor,
a quantity predicted in detail by Doi-Edwards theory [7] and
its subsequent variants [8]. This is possible both because the
deuterium quadrupole interaction has a simple dependence
on the local probe molecule orientation and because rapid
diffusion of the probe as it collides with successive polymer
segments leads to an ensemble-averaged orientation inher-
ited from the host, as expressed through the motionally av-
eraged quadrupolar Hamiltonian. The deuteron method has
proven highly effective in Rheo-NMR measurements of the
segmental alignment tensor for a wide range of molecular
weights in poly(dimethylsiloxane) melts [9-11].

Despite the success of the deuteron NMR method, there
are a number of reasons why use of proton NMR is advan-
tageous. These include the much greater proton NMR sensi-
tivity, the abundance of protons in most polymers, and the
absence of any modification of melt rheology due to the
presence of a potentially plasticizing probe molecule. For
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this reason we have attempted here to derive a theory which
connects the Doi-Edwards predictions for segmental align-
ment to the residual proton-proton dipolar interaction as
measured in a simple spin-echo experiment. Such an experi-
ment yields the rate at which protons lose transverse magne-
tization due to loss of phase coherence. The time constant
associated with this rate is called T, [12]. We will show, by
comparison with measurements carried out in a Couette cell,
that the theory gives a good representation of the apparent
spin-spin relaxation time as a function of applied steady
shear rate.

The essential physics behind our theory is as follows.
First, we postulate an average dipolar interaction strength as
given by the second moment of the dipolar frequency distri-
bution experienced by polymer segments undergoing equili-
bration dynamics within the local tube formed by the topo-
logical constraints of neighboring chains. We further allow
that this interaction strength will vary with the degree of
local stretching of the polymer chain, as given by the usual
Gaussian distribution of end-to-end distances. Second, that
part of the tube local to the polymer segment (the “tube
step”) will have a particular orientation which is lost only by
reptation of the ends of the polymer past that step in the tube
renewal process. Consequently the dipolar interaction is pro-
jected into the laboratory frame, as defined by the magnetic
field direction, according to the usual second rank Legendre
polynomial %(3 cos? §—1), where @ is the polar angle be-
tween the tube step vector and the magnetic field. We use the
Doi-Edwards model to calculate the shear dependence of the
distribution of tube step orientations. Unlike the case of a
deuterated probe molecule, we do not sample an ensemble-
averaged Hamiltonian since the protons are attached to their
local polymer segments in their local tube step. Instead we
detect a sum of NMR signals contributed by protons residing
in each of those steps. Finally we allow for the fluctuation of
the dipolar frequency, w,(f), as segments reptate between
tube steps and hence different local dipolar interaction pro-
jections. Our treatment is based on an earlier idea by Ball,
Callaghan and Samulski (BCS) [13] by which a dipolar cor-
relation function for polymer melts in equilibrium may be
derived by considering the “return to origin” (RTO) probabil-
ity as polymer segments reptate around the distribution of

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.041802

DOUGLASS, CORMIER, AND CALLAGHAN

tube steps. Callaghan and Samulski [3] applied that model in
a study of proton dipolar relaxation in poly (dimethylsilox-
ane) melts under zero shear conditions, showing in the pro-
cess that polymer tube disengagement times and their depen-
dence on molar mass were consistent with the Doi-Edwards
model [7,14]. That zero-shear RTO must now be suitably
modified to allow for a nonisotropic step orientation distri-
bution. In particular we no longer obtain a zero correlation
for segments not returning to tube step origin when the poly-
mer is deformed.

This paper is organized as follows. First we describe the
BCS model for dipolar interactions under reptation, but now
explicitly include the non-RTO probability which, in the
shear deformation case, can yield finite correlations. Next we
express the shear deformation tensor in the hydrodynamic
frame using the usual independent alignment approximation,
allowing us to calculate the form of the dipolar relaxation
function as a function of shear rate. Finally we express this
relaxation function for the special cases of the magnetic field
being aligned along the vorticity, gradient, and velocity di-
rections. The experimental section describes the polymer
used, the Couette cell and the NMR apparatus. It also de-
scribes how the use of spatially selective rf pulses allows one
to choose the relevant hydrodynamic direction along which
to project the dipolar interaction. The results section com-
pares the experimental results with our theoretical projec-
tions. Free parameters in the fit are the tube disengagement
time and the dipolar interaction strength and we show here
that the values derived from our fit are consistent with other
NMR measurements.

II. THEORY

Our first step in outlining the theory is to consider the
interaction experienced by a nuclear spin located in a poly-
mer segment undergoing rapid reorientational motions, those
motions being constrained by the entanglements due to
neighboring chains. The reorientational motions cause the
internuclear dipolar interactions to fluctuate and our task is to
see how those constrained motions are reflected in the
nuclear spin relaxation, and then to determine what effect a
shear deformation will have on that relaxation process. In
doing so we will use the polymer physics model of Doi and
Edwards (DE) which has proven successful in linking the
molecular or microscopic properties of entangled high mo-
lecular weight random coil polymers to macroscopically ob-
servable properties. DE utilizes the instantaneous mean-field
approach whereby each polymer diffuses in a tube formed by
neighboring chains. At length scales smaller than the tube
diameter, a, polymer segments undergo rapid equilibrational
(Rouse) dynamics constrained only by segment connectivity.
Beyond a the Rouse dynamics are confined to curvilinear
displacements (reptation) along the tube, the final dynamics
arising from the dissipation of the tubes themselves and the
creation of new tubes as polymers reptate. Hence in the DE
model, the hierarchy of motion is as follows. The character-
istic time taken for a monomer to diffuse, in Rouse motion,
the distance between entanglements a is the equilibration
time 7,. The intermediate characteristic time 7 corresponds
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to the time taken for the polymer to diffuse its rms end-to-
end distance in the curvilinear tube path. 7, is the tube dis-
engagement time, the final relaxation time characterizing
tube dissipation.

The equilibration modes are so fast compared with the
strength of the dipolar interaction expressed in frequency
units, that the dipolar interactions are effectively averaged
over the equilibration mode time scales. This has the effect
of diminishing, but not entirely removing, the effective
dipole-dipole interaction. But as the slower curvilinear rep-
tational and tube dissipation processes cause the remaining
dipolar interaction to further fluctuate, the NMR measure-
ment is able to access the dynamics.

A. Dipolar relaxation function for reptating polymer segments
in the absence of shear

1. The dipolar interaction

For magnetic resonance in soft matter, the Zeeman inter-
action between a nuclear spin and the magnetic field in
which it is immersed usually overwhelmingly dominates the
various weaker but important contributions to the nuclear
spin Hamiltonian arising from local interactions of the spin
with its environment. The particular local interaction which
will concern us is the internuclear, homonuclear dipolar in-
teraction. The sum of all through-space dipole-dipole inter-
actions between one spin and its neighbors plays the major
role in determining the transverse relaxation of the magneti-
zation of nuclei within a polymer sample.

The dipolar interaction is described by an inner product of
rank-2 spatial and spin operators and the Hamiltonian con-
tribution of the interaction between two spins (labelled 1 and
2) separated by an internuclear distance r, can be written as

MO'}’zhE(

Hp(t) = PO
12 m

(24 ) YO0, DT
(1)

where the Y3’ are spherical harmonics of order 2 and compo-
nent m, while the 75 are bilinear products of spin operators
[17]. The angles ® and & refer to the orientation of the
internuclear vector with respect to the main polarizing field,
and as such will fluctuate as the spins diffuse about through-
out the characteristic time scales.

Off-diagonal components of the above tensor representa-
tion contribute to transitions between eigenstates and hence
primarily to the longitudinal 7'; or spin-lattice relaxation pro-
cess, a phenomenon that while useful, will not be of further
application here. However, the secular components of this
dipolar perturbation to the Hamiltonian influence the preces-
sional frequencies of the spin coherences and thereby con-
tribute to the transverse relaxation associated with dephas-
ing. The secular part of the dipolar interaction tensor may be
written as

oy ———=-P,[cos O()][31,.[,,- 1, - L], (2)
12

Hp(t) =

where P,(cos ) is the second-order Legendre polynomial
%(cos2 @—%). Dipolar perturbations such as these induce ad-
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FIG. 1. (Color online) Polymers are free to diffuse within a tube
formed by the surrounding network. Characteristic steps pointing in
the directions {u} are randomly oriented under zero shear, though
when the material is deformed (e.g., by a shear stress) the tubes are
much more likely to have greater alignment with some preferred
direction.

ditional precession w(f) with respect to the Larmor frequency
wy. In what follows we shall only consider this relative be-
havior of the spin precession.

By its equilibration motion, a polymer is free to take on
any conformation within a tube which naturally lies between
restrictions formed by contiguous tube steps characteristi-
cally traversing the distance a between entanglements, but
which in thermal equilibrium are randomly oriented. Each
step is also labelled with a normalized vector @ indicating its
direction [see Fig. 1],

sin 6 cos ¢
U=/ sin fsin ¢ |, (3)
cos 0

where the spherical polar angles are measured with reference
to the magnetic field frame as the z axis, and some arbitrary
perpendicular direction as the x axis, a reference frame we
shall later refer to as the {x,y,z} or simply the laboratory
frame. The laboratory frame defines the magnetic field direc-
tion and the magnetic field direction defines the secular part
(projection) of the Hamiltonian which is expressed in Eq.
(2). Ultimately it is against the laboratory frame {x,y,z} that
any such Hamiltonian projections will be made in our simu-
lations and experiments.
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Because the equilibration modes allow monomers to
tumble at rates much faster than the dipole interaction
strength the dipolar interaction is “preaveraged” within the
local constraining tube step. It is these residual dipolar inter-
actions that will allow investigation into slow polymer dy-
namics by NMR. Let the angles (6, ¢) denote the orientation
of the tube step vector, u, with respect to the magnetic field
and (0,,P,) the orientation of the fluctuating internuclear
vector with respect to u. Then, under motional averaging
conditions, and by the spherical harmonic addition theorem,
it may be shown

Py[cos ©(1)] = (Py[cos O (1) ) Py[cos 6(1)]. (4)

Preaveraging results in (P,[cos ®,(¢)]) being small but finite,
leading to an effectively scaled dipolar interaction strength
determined by the local value of P,[cos 6(t)], where we note
that cos 0(r)=ii.(r). Allowing for this scaling effect we may
write

w(t) = wd[ﬁf(t) - %] (5)

As the polymer reptates within the tube, the segments expe-
rience the stochastic fluctuations which arise from different
projections, ii_(r) of the local tube directors. This leads us to
describe w(¢) in terms of its two-point correlation function

C(1) =(w()w(0)) (6)

and its initial value wi.

Up to this point we have considered only a local spin pair
experiencing dipolar interactions. Despite this, w,; can en-
compass multiple dipolar interactions, whether intramolecu-
lar or intermolecular, so that w, represents the rms intensity
of the combined set of dipolar interactions. It seems reason-
able to assume that reptation will cause similar fluctuations
in both intramolecular and intermolecular components. It is
important to note that motional averaging, expressed through
Eq. (4), causes the effective direction of the dipolar interac-
tion to be successively projected. This means that for all
fluctuations faster than the strength of the dipolar interaction
(i.e., all internal segmental motion of the polymer) cause the
effective internuclear axis to be tube step direction (see Fig.
1).

It is important to note that even allowing for multiple spin
interactions, the scaled interaction strength w,; will not be
identical in each tube step because the distribution of lengths
of subchains in each tube step will be Gaussian. It may be
shown [15,16] that the dipolar interaction strength for a ran-
dom coil subchain of K Kuhn segments of length b and end-
to-end length ry is given by w,=rg(Kb?*) ™' wyg, where wy is
the root mean square w3 of the distribution of dipolar in-
teraction strengths.

2
3rg

The probability distribution P(rg) ~ r exp(—Zsz) fully
determines the probability distribution P(w,) of dipolar
interaction strengths felt, whether arising from intramolecu-
lar or intermolecular interactions. This effect will need
to be accounted for in our theory of dipolar interaction
fluctuations.
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2. The dipolar correlation and transverse relaxation in the
Doi-Edwards De Gennes model

The NMR transverse relaxation experiment to be de-
scribed here was carried out using a spin-echo sequence
which has the effect of refocussing all unwanted magnetic
field inhomogeneity whose Hamiltonian terms are all linear
in the spin operators, while leaving unaffected the bilinear
dipole-dipole interaction. What is measured therefore is

R(7) =\ exp iffdt’w(t') . (7)

0

Following the work of Anderson and Weiss, in which it is
assumed that the distribution of frequencies that have arisen
due to dipolar fluctuations is Gaussian for certain classes of
experiment the normalized transverse relaxation function for
a single proton located in a tube segment which provides a
certain remnant dipolar interaction strength may be written
as [17]

R(T;wd)zexp<— frd[’('r_t’)c(t’)>_ (8)

0

Now the NMR signal enveloped by the total relaxation
can be determined by summing the signals from all protons,
which experience a range of dipolar interaction strengths

S(7) =f dwR(T;09) P(wg). )
0

Clearly evaluation of C(¢') is the crucial step for any
model of the dynamics. In the present case we may combine
Egs. (5) and (6) to write

C(t") = [ @i (0)) - H@20)y + 5], (10)

where we have assumed stationarity, <ﬁf(t’)>=<12§(0)>, and
also that the local interaction strength w, is unchanged from
time O to t. Strictly, w,; will change over a Rouse time, as
local polymer segments reptate. Our analysis suggests that
allowing for this variation is of minor significance in com-
parison with allowance for the overall distribution in w, val-
ues.

Ball, Callaghan, and Samulski [13] adopted the Anderson-
Weiss [18] approach to defining the relevant correlation
function for the reptating polymer chains in terms of a
return-to-origin probability. For the case where segments re-
turn to origin, <ﬁ§(t’)ﬁ§(0)>=<ﬁ?(0)) while otherwise
<ﬁ§(l’)ﬁ§(0)>=<ﬁ§(t’)}(ﬁf(O)}z(ﬁ?(O))z. The Doi-Edwards
model gives us the means by which the RTO probability may
be estimated for entangled high molecular mass polymers.
We may estimate the chance that by curvilinear diffusion a
certain monomer will return after a time delay ¢, to exactly
the same tube step it originally occupied at time =0, pro-
vided that tube step is not yet annihilated due to reptation.
This probability, denoted Wgpo(f), can be approximated by
the values [13]

(t/7,)714,
(t/7,) 4t )14,

T, <t < Tg,
Wrro(t) = (11)

TR<t< Ty,
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These '/ and r~V/? scaling regimes are related to well-
known power-law signatures for reptation [20].

Clearly, any estimation of C(¢') concerns two probabili-
ties, the RTO probability and the probability that a tube for a
given polymer as seen from the reference state still exists.
For a polymer segment to return to the initial tube step with
the same director, the probability is ip.Wrro and uz(t)
:u?(O). Note the need for ¢, in the product, the require-
ment that the tube survives. Conversely the probability that
the monomer ends up in a different environment step is 1
— Yrube WrTO- This complementary probability allows for cor-
relation loss due to either tube decay or to a failure for a
monomer to return to origin, and should either of these two
negative results occur, ﬁ?(t) will be uncorrelated with ﬁ?(O),
causing (ﬁg(r)>=<12§(0)).

The correlation can hence be written as the weighted sum

C(1) = @A Prupe () Wrro(1) + WZB[1 = Prupe() Wrro(1)]

(12)
= ;LA = B)thuvet) Vrro() + BI. (13)
where following Eq. (10),
A= ((0)) = 3@(0)) + 5, (14)
B =(i2(0))* = 3(i2(0)) + 5. (15)

In thermal equilibrium the distribution of u vectors is iso-
tropic, (1,22(0)):% and B=0. Note the probability that the tube
existing at time zero has survived until time ¢ is denoted
Uube(?), a well-known, multiexponential function of time [7],

_y 8 12;)
l;btube(t) - P%d szz exp( 7, ’ (16)

where 7, is the tube disengagement time.

B. Dipolar relaxation function for reptating polymer segments
in the presence of shear

1. Shear deformation tensor in the hydrodynamic frame

To handle the case where the polymer melt is continu-
ously deformed, we make the assumption that the tube seg-
ments in the original melt hold a 1-1 correspondence with
the tube segments in the resultant state. Typically the direc-
tions of the vectors along the tube segments are modified,
though we still require that the new directors {@} be normal-
ized.

It is important to note that we assume that only the tube
segments enveloping the actual polymer are deformed and
biased in direction, and that no modification of local polymer
dynamics occurs.

In a prototypical situation which can be related in the
laboratory to a Couette shearing cell, for example, we can
associate the X (or velocity) direction with the shear direc-
tion, where the Y and Z directions are the velocity gradient
and vorticity directions, respectively. In this hydrodynamic
frame {X,Y,Z}, arbitrary displacements and velocities are
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transformed from their static counterparts through the appli-
cation of the deformation tensor,

0
0 [. (17)
1

We shall be particularly interested in applying this tensor
to the unit vectors representing tube segment directors. These
directors u must be expressed in the {X,Y,Z} frame, which
for the three cases in which one of the three hydrodynamic
axes are aligned with the z direction (the NMR B, field di-
rection) can be obtained by a simple cyclical interchange of
components,

, , (E : lAl){zx,y,z}
”z2 = u{)?,Y,Z} == =hxya(%6.¢). (18)

IE - &>
Following Doi and Edwards [7] we assign the effective
strain 7y to the Weissenberg number y7, where 7y is the
steady shear rate.

2. The correlation function under shear

Should a shear field (or other deformational flow) be im-
posed upon the polymer the transformed and renormalized
directors are substituted with no further modification to this
expression, due to the 1-1 correspondence between tube
steps in the thermal equilibrium and flow deformed distribu-
tions. We may now use this expression for % in the equations
for A and B,

A(y) = (hX(7,6,8)) - 3(h(y,6,0)) + 3, (19)

Unlike the zero shear case B# 0. From Eq. (12),

R(7;w,)=expy— wjf dt(t=1)[(A = B) hue() Wrro(?) + B] .
0

(21)

This is an expression involving an integral which we expect
to be simple to evaluate numerically—given that we have
calculated A and B for an experiment conducted at a given
shear rate previously. The y7;-dependence inherited from A
and B is implicit in the calculation.

C. Predictions for magnetic field along vorticity, gradient, and
velocity directions

In the NMR experiment the z axis is defined by the mag-
netic field direction. In Doi-Edwards theory the {X,Y,Z}
axes refer to the hydrodynamic frame. In practice we may
select different axes in this frame via the magnetic field, by
simply choosing our sample geometry appropriately. For ex-
ample, we may choose z=Z by using a Couette cell geom-
etry which is aligned with the NMR B, field (the vertical
Couette). In this case the relevant projection of h is hj.
Through the use of a “slice-selection” technique in which a
signal may be acquired from a predetermined segment of the
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1

Y

FIG. 2. Simulating the NMR signal where the velocity direction
X is aligned with the magnetic field is experimentally equivalent to
restricting the active volume of a horizontal Couette cell to lie in the
horizontal plane (left of figure), and (right of figure) vertical slice
selection on a Couette cell is matched theoretically by the simula-
tion z=Y.

sample, a horizontal Couette can be used as shown in Fig. 2
so that the NMR B, field is projected along X or Y for the
chosen segment. We now undertake to find expressions for
hy and hy.

1. Velocity direction=B\, direction

Focussing now on the case where the shear direction is
coincident with the B field direction, we should note that we
will still use the same deformation tensor (i.e., the one that
produces the transformation X — X+ yY in the hydrodynamic
frame), but the components of @ will be cyclicly inter-
changed in correspondence with the axes. In this geometry
(X=z, Y=x, Z=y), then, u,— u.+yu,, and the deformation
tensor equation reads

1 0 cos 0
E-a={0 1 O |[sinfcos¢ |,
0 O 1/\sin@sin ¢

(E- ﬁ)fz (E- ﬁ)f(z (cos @+ ysin 0 cos ¢)?,

|E-@]*=1+ ycos ¢sin 20+ sin” Hcos” ¢, (22)
and hence from Eq. (18)

(cos @+ ysin 0 cos ¢)?
1+ ycos ¢sin 20+ sin® O cos’> ¢’
(23)

hX(‘y’ 07 d)) =

2. Velocity gradient direction=B,, direction

We turn now to the final case which is orthogonal to the
NMR frame, that in which the velocity gradient direction is
coincident with the B, field. Again we use the same defor-
mation tensor (X— X+ yY in the hydrodynamic frame), and
the components of @ will be cyclicly interchanged once
more, such that Uy — ity +yu, and the deformation tensor
equation now reads
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cos 6 (24)

and similarly

(E-0)>=(E @)} =cos’ 0,

|E - d[*=1+ ysin ¢ sin 20+ y* cos* 6
and hence from Eq. (18),

cos® @
1+ ysin ¢sin 20+ y* cos®

hy(')’, 05 d)) = (25)

III. EXPERIMENT
A. Horizontal Couette measurement of 7, in polymer melts

As explained in the introduction, the purpose of the
present work is to use proton NMR transverse relaxation to
measure segmental alignment under shear, thus circumvent-
ing the need for a deuterated probe molecule and the conse-
quently lower signal-to-noise ratio. The through-space dipo-
lar interactions between protons are analogous to the
deuteron’s electric quadrupolar interaction with the molecu-
lar bond electron cloud, so that the physics expressed by Eq.
(2) apply in each case. The distribution of dipolar interaction
strengths leads to a loss of phase coherence of the spin sys-
tem and a damping of the signal, the so-called 7, relaxation.
To remove unwanted damping effects due to local field in-
homogeneity, we utilize a spin-echo to measure 7,. Under
the spin-echo, magnetic terms in the spin Hamiltonian are
refocussed, while dipolar terms remain.

NMR spectra and the extracted values for the characteris-
tic transverse relaxation time 7, were all obtained through
the use of a horizontal Couette cell located within the bore of
a Bruker AMX 300 MHz wide bore magnet. The sample
used was a high molecular weight (M, =494 kDa) poly(dim-
ethylsiloxane) (or PDMS) (see Fig. 3) with a polydispersity
index M,,/M,=1.84, obtained from American Polymer Stan-
dards Corporation. PDMS has a glass transition temperature
of approximately —150 °C [19], well below room tempera-
ture, and its structure (see Fig. 3) is such that both intramo-
lecular and intermolecular proton dipolar interactions play a
role in the melt. The molecular weight located between en-
tanglements M, in such a PDMS melt is ~10 kDa [19] and
hence the number of entanglements Z along the length of the
polymer is simply M/M,~49. The flow curve of this poly-
mer is shown in Fig. 4 with both shear stress and normal
stresses indicated.

The poly(dimethylsiloxane) is enclosed in a 0.5 mm gap
between concentric MACOR machinable glass tubes (Corn-
ing, NY). By using slice-selective gradients, only specific
volumes within the sample that highlight the regions of in-
terest (e.g., velocity direction aligned with NMR B, field) are
active in the experiment. This was achieved through the use
of a sequence (90;—7'—18Oi_—7—acquire), shown schematically
in Fig. 5. The selective excitation pulse sequence used has
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- CH,

Si—O

_ CH3 N

FIG. 3. The chemical structure of poly(dimethylsiloxane).

been specially devised to minimize exposure of selected
nuclear spins to any relaxation, so that high quality NMR
spectroscopy can be performed in the desired region. We
describe this method in another paper [9], however the es-
sential details of the pulse and the Couette are shown in Figs.
5 and 6. The technique employs a selective precursor pulse
sandwich which destroys magnetization outside the desired
region but which stores along the z axis for later recall, the
magnetization from the region of interest. Using a variant of
the pulse sequence of Fig. 5 this magnetization can be used
to obtain a confirmatory image (see Fig. 7). Experiments
were carried out with an acquisition bandwidth of 50 kHz
and 102 different delay times 7 were used between 0.1 ms
and 300 ms. The duration of the slice selective pulse is of the
order of 1 ms so that insignificant slice distortion occurs due
to shear. Furthermore, motion during the spin-echo does not
significantly perturb the shear-dependent dipolar interactions
due to the small proportion of fluid experiencing high veloc-
ity near the inner wall [4].

B. Numerical computation of 7', in polymer melts

Our numerical calculations based on the theory described
previously were all performed by software hand-coded in
C++. The software allows the choice of orientation of the
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o ga:i S otnny 112
1074 YN
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FIG. 4. Flow curve for the PDMS sample used in all
experiments.
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FIG. 5. The Hahn echo pulse program, which consists of a pre-
liminary pulse sandwich which leaves only longitudinal signal from
a desired slice (achieved by applying a slice gradient G, followed
by a transverse magnetization-destroying homospoil gradient G;,),
followed by a standard echo sequence of varying echo time. The
signal strength as a function of echo time yields 75.

Couette cell, as well as shear rate, the two free parameters
for the laboratory experimenter to change, in addition to tun-
able parameters particularly relevant to the sample being in-
vestigated, namely the tube disengagement time 7,, the av-
erage dipole interaction strength wgyy, and Z, the number of
tube segments the polymer is divided into by entanglements.

Given the orientation and shear rate, it is a simple matter
to evaluate the relevant hyyy » function, and hence find A
and B. The modification of Eq. (8) is appropriate at this stage
so as to accommodate our expectation that the distribution of
dipolar interaction strengths is not unimodal, but is spread
broadly due to the end-to-end vector of local subchains in
each tube being Gaussian. The double integral over w, and ¢
can now be evaluated to determine the normalized transverse
relaxation function desired.

IV. RESULTS AND DISCUSSION

Experimental measurement of 7', in polymer melts, and fitting
model parameters

Using the Hahn echo pulse sequence previously de-
scribed, the echo signal acquired is modulated by the trans-

?
gradient coils

coils

rubber o-ring
teflon insert

FIG. 6. The horizontal Couette cell.
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FIG. 7. (a) Slice of active volume produced in a horizontal
Couette cell (viewed along the cell vorticity axis) by applying a z
gradient in the pulse program, and (b) an alternate active volume
produced by applying a gradient perpendicular to the z direction
and the vorticity axis of the cell.

verse relaxation envelope. Plotted on a logarithmic scale, all
echo signal intensities acquired at shear rates ranging from
0 to 100 s~! are closer to Lorentzian [S(f) ~exp(—kt)] than
Gaussian [S(¢) ~exp(—k#*)], as seen in Fig. 8. By making a
Taylor expansion of the return-to-origin probabilities in Eq.
(8), it can be seen that if the problem were treated with a
unique value of the preaveraged dipolar interaction strength,
a Gaussian line shape might be expected. However, by per-
forming the integral over the correct weighting of w, values
a line shape closer to Lorentzian results. Note however that
for very short times, the theory (see Fig. 9) does predict an
opposite curvature to that seen in the measurements. One
possible explanation for the initial rapid decay of the mea-
sured signal is the settling of the spin-echo to steady state
under the action of a less than perfect 180° refocussing
radio-frequency pulse.

Figure 10 shows the extraction of 1/e points from these
acquired curves as a function of shear rate. From this data, T,
appears to be heavily shear-rate-dependent at low (y<20)
shear rates before finding an ultimate 7, at higher shear rates,
where little or no further decrease is seen.

In fitting the three tunable parameters Z, w,, and 7, three
characteristic reference conditions were used, namely the
transverse relaxation times at y=0s~!, y=10s7!, and ¥
=100 s7!. With the preliminary values of Z=50, 7,
=210 ms, chosen from earlier work [11], the ratio of the
transverse relaxation time at low and high shear rates was
found to be disproportionately large and hence these values
were adjusted to give a best fit between experimental values
of T, and numerical simulation. We obtain

Z=35+10,
wgo = (3900 = 200) Hz,

7,= (600 + 300) ms.

We note immediately that the value of w,, obtained here
is consistent with that found in earlier equilibrium studies
[3], noting that in that reference, M2=Awf,0, where in equi-
librium, A=4/45. By contrast the values of Z and 7, differ
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FIG. 8. (Color online) (a) Experimentally measured echo sig-
nals, having obtained a horizontal slice within the horizontal Cou-
ette geometry (z=X) for different shear values, and (b) those sig-
nals obtained through the use of a vertical slice.

somewhat from values obtained using deuterium NMR (Z
~49, 7,=210 ms) [11]. This is perhaps not surprising given
the very different nature of the averaging processes relevant
to deuterium NMR (where the probe molecule motionally
averages the segment ensemble) and proton NMR (in which
a sum of signals arising from different segments is aver-

v
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100.0

intensity (arb. units)
o

v A 4 > o=

0.01 T T T T T T T T T 1
0 2 4 6 8 10
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FIG. 9. (Color online) Simulated echo signals for the horizontal
Couette geometry (z=X) for different shear values.
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FIG. 10. (Color online) Simulated transverse relaxation time as
a function of shear rate, in the cases where the hydrodynamic X axis
and the hydrodynamic Y axis are aligned with the magnetic field B,,.
The data points correspond to 1/e times obtained for the echo at-
tenuation at different shear rates.

aged). We note that the sample has finite polydispersity
(% = 1.84) and no distribution of molecular weights has been
allowed for in our simulation, nor was it considered in the
earlier deuterium NMR work.

With our best-fit values, the signals generated for the hori-
zontal Couette cell experiment [i.e., using the hy expression
in the AB(y) function] are shown in Fig. 9 for shear rates
varying between 0 and 100 s~!. The curve corresponding to a
shear rate of 100 s™! is essentially the infinite shear case:
increasing shear does not modify the curve further. It is also
interesting to note that at all shear rates the difference in
transverse relaxation time between the hy and hy cases is at
most 0.1%.

V. CONCLUSIONS

Using the observation of proton NMR transverse relax-
ation, we have seen the effects of shear induced alignment in
polymer melts. In order to understand these effects we have
developed further a theory of proton relaxation based on the
Doi-Edwards framework, in particular focussing on the time-
correlated probability that a proton attached to a polymer
chain returns to the same tube segment through reptation.
The effect of shear is to perturb the orientational distribution
of tube steps, and so to influence the dipolar correlation func-
tion. A key aspect is the inclusion of a distribution of dipolar
interaction strengths w,, thus explaining near Lorentzian sig-
nal decay. We are thus able to measure 7, values for a
494 kDa melt of poly(dimethylsiloxane).

The theory broadly matches the time dependence of the
echo decays, and the dependence of T, values on shear rate.
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A fit to the shear dependent 7, data yields the values 7,
=600 ms, Z=35 and w;=3900 Hz. The Z and 7, values are
consistent with earlier measurements made using deuterium
NMR under shear, while the fitted value for w, is consistent
with proton dipolar relaxation measurements under zero
shear.
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